

Systems Approaches for Resilient Agriculture

for GEAR-UP II, Taichung, Taiwan, Nov 16 2015

Susie Y. Dai Research Associate Professor Office of Texas State Chemist Department of Veterinary Pathobiology Texas A&M University

OFFICE OF THE TEXAS STATE CHEMIST

Texas Feed and Fertilizer Control Service
 Agriculture Analytical Service

Global Climate Change as a Major Challenge for Agriculture

2010 NASA/Jet Propulsion Laboratory false-color image

OFFICE OF THE TEXAS STATE CHEMIST

Systems Approach for Resilience Agriculture

Characterization

Resilient and Sustainable

Evaluation

Mechanism

Management

Outline

- Innovative Technologies to Enable Mechanism Study: Systems Biology for Resilience Agriculture
- Characterization and Evaluation Tools: Enable Safety of Agriculture Products in a Changing Climate
- Science-Driven Management: A Systematic Approach for Food and Feed Safety toward Resilient Agriculture – "One Sample Strategy"
- Perspectives: Regulatory Science to Improve Food and Feed Safety for More Resilience in Production System

Outline

- Innovative Technologies to Enable Mechanism Study: Systems Biology for Resilience Agriculture
- Characterization and Evaluation Tools: Enable Safety of Agriculture Products in a Changing Climate

Science-Driven Management: A Systematic Approach for Food and Feed Safety toward Resilient Agriculture – "One Sample Strategy"

Perspectives: Regulatory Science to Improve Food and Feed Safety for More Resilience in Production System

Proteomics at Systems Biology Age

Mass Spectrometry

- Technique to determine the <u>relative</u> weight of atoms and molecules by separation of charged atoms and molecules based (ions) on their mass in the gas phase. (first mass spectrometer 1910, Ne-isotope 20/22)
- Molecules need to be in the vapor phase
- Molecules need to be ionized

State of the Art Shot-gun Proteomics to

OFFICE OF THE TEXAS STATE CHEMIST

"Housekeeping"

Soluble proteins

Soluble proteins

Membrane proteins

Improve Protein Identification

20 nmol \approx 1 μ g \approx 1 grain of salt pmols fmols

amols

1-10 pmol →

100 fmol

2 fmol ≈ 1 copy/cell (1 x 10⁹ cells)→

Typical Western>

50 amol Sequence LOD on LCQ → Phosphoproteins

Glycoproteins

Latest LC-MS/MS Platform at Our Lab

OFFICE OF THE TEXAS STATE CHEMIST

Case 1: Systems Biology Analysis of Rice Insect

OFFICE OF THE TEXAS STATE CHEMIST

Defense to Deliver Resilient Crops

Zhang et al, Molecular and Cellular Proteomics, 2013 Nov;12(11):3431-42

Case 1: Systems Biology Analysis of Rice Insect

Zhang et al, Molecular and Cellular Proteomics, 2013 Nov;12(11):3431-42

Case 2: Systems Biology to Enable Efficient Lignin

OFFICE OF THE TEXAS STATE CHEMIST

Conversion – Path for Green Energy

Case 2: Systems Biology to Enable Efficient Lignin

OFFICE OF THE TEXAS STATE CHEMIST Conversion – Path for Green Energy

Case 3: Proteomics to Enable More Efficient Fungal

Bioremediation of Dye and Lignin

OFFICE OF THE TEXAS STATE CHEMIST

Case 3: Proteomics to Enable More Efficient Fungal

Bioremediation of Dye and Lignin

OFFICE OF THE TEXAS STATE CHEMIST

Conclusions I

- Texas A&M Agrilife Implemented the State-of-the-Art Proteomics Platform as an Enabling Systems Biology Tool to Address Scientific Challenges in Resilient Agriculture
- The Platform can Identify a Few Thousand Proteins within One to Two Days and Greatly Improved the Protein Identification as compared to Gel-based System
- Complementary to the Genome approach and discovered functional pathways for variety of biological questions
- Proteomics-based Systems Biology has Enabled Improved Crops for Insect Defense, More Efficient Biomass Utilization, and Enhanced Fungal Bioremediation, All of Which are Supporting the Response to Global Climate Challenges

Outline

- Innovative Technologies To Enable Mechanism Study: Systems Biology for Resilience Agriculture
- Characterization and Evaluation Tools: Enable Safety of Agriculture Products in a Changing Climate
- Science-Driven Management: A Systematic Approach for Food and Feed Safety toward Resilient Agriculture – "One Sample Strategy"
- Perspectives: Regulatory Science to Improve Food and Feed Safety for More Resilience in Production System

Characterization and Evaluation – Global Climate

OFFICE OF THE TEXAS STATE CHEMIST

Change Leads to More Pathogen Outbreaks

FDA Aflatoxin Action Levels

ppb	Product Description
20	Corn, peanut products, cottonseed meal, and other animal feeds and feed ingredients intended for dairy animals, for animal species or uses not specified above, or when the intended use is not known
20	Corn, peanut products, and other animal feeds and feed ingredients, but excluding cottonseed meal, intended for immature animals
100	Corn and peanut products intended for breeding beef cattle, breeding swine, or mature poultry
200	Corn or peanut products intended for finishing swine of 100 pounds or greater
300	Corn and peanut products intended for finishing (i.e., feedlot) beef cattle

Regulation in Taiwan

Sanitation Standard for the Tolerance of Mycotoxins in Foods

DOH Food No.0980462647, 12/04/2009 DOH Food No.1011302722, 09/03/2012 MOHW Food No. 1021350146 Amended, 08/20/2013

Article 2

The tolerance of aflatoxin in foods shall meet the following standards:

Food Category	Tolerance of Total Aflatoxin		
	(Including Aflatoxin B ₁ , B ₂ , G ₁ , G ₂)		
Peanut, corn	Not more than 15 ppb		
Rice, sorghum, legumes, nuts,	Not more than 10 pph		
wheat, barley and oat	Not more man to ppo		
Edible oils and fats	Not more than 10 ppb		
Milk	Not more than 0.5 ppb (as aflatoxin M_1)		
Milk powder	Not more than 5.0 ppb (as aflatoxin M_1)		
Other foods	Not more than 10 ppb		

Food Chain: Feed to Milk

- Exposure of Aflatoxin contaminated corn greater than 20 ppb to feed dairy cattle
- Contaminated milk containing >0.5 ppb Aflatoxin M1.

> Milk Dumping.

LC-MS Tools for Characterization at Our Lab

OFFICE OF THE TEXAS STATE CHEMIST

1472 LI ET AL.: JOURNAL OF AOAC INTERNATIONAL VOL. 93, No. 5, 2010

FOOD CHEMICAL CONTAMINANTS

Rapid Determination of Fumonisins in Corn-Based Products by Liquid Chromatography/Tandem Mass Spectrometry

WEI LI

Texas A&M University, Texas AgriLife Research, Office of the Texas State Chemist, 445 Agronomy Rd, College Station, TX 77843

TIMOTHY J. HERRMAN¹

Texas A&M University, Department of Soil and Crop Sciences and Office of the Texas State Chemist, College Station, TX 77843

SUSIE Y. DAI¹

Texas A&M University, Department of Veterinary Pathobiology and Office of the Texas State Chemist, College Station, TX 77843

A simple, fast, and robust method was developed for the determination of fumonisin B1 (FB1), fumonisin B₂ (FB₂), and fumonisin B₃ (FB₃) in corn-based human food and animal feed (cornmeal). The method involves a single extraction step followed by centrifugation and filtration before analysis by ultra-performance liquid chromatography/electrospray ionization (UPLC/ESI)-MS/MS. The LC/MS/MS method developed here represents the fastest and simplest procedure (<30 min) among both conventional HPLC methods and other LC/MS methods using SPE cleanup. The potential for high throughput analysis makes the method particularly beneficial for regulatory agencies and analytical laboratories with a high sample volume. A single-laboratory validation was conducted by testing three different spiking levels (200, 500, and 1000 ng/g for FB1 and FB₂; 100, 250, and 500 ng/g for FB₃) for accuracy and precision. Recoveries of FB1 ranged from 93 to 98% with RSD values of 3-8%. Recoveries of FB₂ ranged from 104 to 108%, with RSD values of 2_6% Decoveries of FR- ranged from 04 to 108%

Texas (7) upon fumonisins exposure have also been reported. Fumonisin B1 (FB1), the most abundant of the fumonisins, has been classified a group 2B carcinogen, i.e., possibly carcinogenic to humans (8).

Because of their wide prevalence and potential toxicities, fumonisin B1 fumonisin B2 (FB2), and fumonisin B3 (FB3), the major fumonisins found in naturally contaminated corn, are included in the guidelines set by the U.S. Food and Drug Administration (FDA) for industry in the United States (9). The recommended maximum levels for fumonisins in human foods and animal feeds that FDA considers achievable with the use of good agricultural and good manufacturing practices are regulated (i.e., 2000 ng/g in degermed dry milled corn products for human food, and 5000 ng/g in corn and corn byproducts intended for equids and rabbits). Keeping fumonisins below these recommended levels can reduce exposure to fumonisins that may be found in corn products intended for human and animal consumption. Within the European Union (EU), the Commission Regulation has recently established regulatory limits of fumonisins in foodstuffs based on the sum of FB1 and FB2 (10); more specifically, a maximum level of 1000 ng/g has been set for

Better lab efficiency

W. Li, T. J. Herrman, S.Y. Dai # Journal of AOAC International. 2010, 93, 1472. W. Li, T. J. Herrman, **S.Y. Dai** # Rapid Commu. Mass Spectrum. 2011, 25, 1222-30

Improved throughput

Research Article Received: 23 December 2010 Revised: 8 February 2011 Accepted: 10 February 2011

Published online in Wiley Online Librar

Rapid Commun. Mass Spectrom. 2011, 25, 1222-1230

(wilevonlinelibrary.com) DOI: 10.1002/rcm.4979 Determination of aflatoxins in animal feeds by liquid

chromatography/tandem mass spectrometry with isotope dilution

Wei Li¹, Timothy J. Herrman^{1,2*} and Susie Y. Dai^{1,3*}

¹Office of the Texas State Chemist, Texas AgriLife Research, Texas A&M University, 445 Agronomy Rd., College Station, TX 77843, USA

² Texas A&M University, Department of Soil and Crop Sciences, Office of the Texas State Chemist, College Station, TX 77843, USA

³ Texas A&M University, Department of Veterinary Pathobiology, Office of the Texas State Chemist, College Station, TX 77843, LISA

The objective of the present study is to develop a simple, fast method for detection of aflatoxins in animal feeds. Simultaneous quantitation of four aflatoxins (AFB1, AFB2, AFG1 and AFG2) in animal feeds was achieved in a single liquid chromatography/tandem mass spectrometry (LC/MS/MS) run. The solid-phase extraction cleanup step is eliminated with the stable isotope dilution method. Matrix effects were observed and overcome by isotope dilution. The method was tested in a variety of animal feed matrices and proved to be accurate and reliable. Method ruggedness tests resulted in recoveries of 78% to 122% with an intra-day assay precision of 2% to 15% and an interday assay precision of 3% to 17%. These results indicate that this method is suitable for quantitation of aflatoxins in animal feeds. Copyright © 2011 John Wiley & Sons, Ltd.

Aflatoxins (AF) are secondary metabolites of fungal species such as Aspergillus flavus or Aspergillus parasiticus growing in a wide variety of agricultural and food products. As the major aflatoxins produced in nature, aflatoxin B1, B2, G1, G2 are included in the setting of United States Food and Drug Administration (USFDA) guidelines for industry and the regulation of the European Commission due to their high carcinogenic potency.^[1 3] The USFDA allows for a maximum of 20 parts per billion (ppb) of total aflatoxin in corn, peanut products, cottonseed meal, and other animal feed ingredients intended for dairy animals in the USA, whereas the European Commission established maximum acceptable levels ranging from 5 to 20 ppb for AFB1 for a variety of animal feeds.

The major commodities that are prone to aflatoxin contamination include peanuts, corn, rice, dry fruit, tree nuts and spices. Since animal feed utilizes these agricultural crops, contamination of aflatoxins poses a risk to animal health. However, animal feed has complicated compositions such as cereal, oil seed, vitamins, fats and other chemicals, which challenges the analyses of aflatoxin in animal feed. In the next decoder affect has been made to eachle enducie of

Generally, the extraction of aflatoxins from animal feed includes a solid-liquid extraction step followed by a cleanup procedure. The cleanup steps can minimize the influence of matrix components and improve limit of detection (LOD). Most liquid chromatography based methods for food and animal feed analysis have been developed based on this practice.^[15 24]

More recently, analysis of aflatoxins with liquid chromatog raphy/tandem mass spectrometry (LC/MS/MS) has gained popularity. By using the mass spectrometry as the detector, identification of aflatoxin can be based on the molecular weight and precursor ion fragmentation pattern. The specificity and sensitivity of the modern mass spectrometry instruments thus offers the possibility of eliminating the extensive purification steps, which is the so-called 'dilute-andshoot' method.^[25] The separation power of mass spectrometry instruments also requires less chromatographic separation for both the analytes and the matrix components. A common observation with the 'dilute-and-shoot' method is the severe matrix effect, which is manifested as a signal enhancement or suppression of the analyte in the LC/MS/MS analysis. Because animal food industor a variative of different materians counted

Rapid LCMS Method for Fumonisin Analysis in

OFFICE OF THE TEXAS STATE CHEMIST

Corn-based products

Comparison of recovery rates without <u>internal</u> <u>standard (IS)</u> and those with IS when testing blank cornmeal samples fortified with 1 μ g g⁻¹ for FB₁, 0.5 μ g g⁻¹ for FB₂ and 0.25 μ g g⁻¹ for FB₃.

(Wei et al. J AOAC. 93, 2010, 1472)

Comparison

Based on 24 samples estimation.

Rapid Methods: Point of Sampling

Test Format	Frequenc	Percent

y

97

9

3

5

2

1

5

67

51

5

2

3.62

1

1

3

35

Li et al, Using commercial immunoassay kits for mycotoxins: 'joys and sorrows'? World Mycotoxin Journal Volume 7 2014

World Mycotoxin Journal, 2014; 7 (4): 417-430 SPECIAL ISSUE: Rapid methods for mycotoxin detection Wageningen Academic Publishers Decision Making

- Surveillance
- Compliance

Using commercial immunoassay kits for mycotoxins: 'joys and sorrows'?

Wei Li¹, S. Powers² and S.Y. Dai^{3*}

¹Office of the Texas State Chemist, Texas A&M University, 445 Agronomy Road, College Station, TX 77843, USA ²VICAM, 34 Maple Street, Milford, MA 02157, USA ³Department of Veterinary Pathobiology, Texas A&M University, College Station, 77843, USA; susie@otsc.tamu.edu

> Received: 29 January 2014 / Accepted: 2 June 2014 © 2014 Wageningen Academic Publishers

Conclusions II

- We have systemically developed and utilized series of analytical technologies to characterize and monitor fungal toxins in food and feed sectors
- The methods were implemented to support the government surveillance program in the changing global climate

Outline

- Innovative Technologies To Enable Mechanism Study: Systems Biology for Resilience Agriculture
- Characterization and Evaluation Tools: Enable Safety of Agriculture Products in a Changing Climate

 Science-Driven Management: A Systematic Approach for Food and Feed Safety toward Resilient Agriculture – "One Sample Strategy"

Perspectives: Regulatory Science to Improve Food and Feed Safety for More Resilience in Production System

Regulation

AgriLIFE RESEARCH

OFFICE OF THE TEXAS STATE CHEMIST

Home > Home

Home

About OTSC
Laws/Rules/Policies
Reports
Education
Presentations
Forms/Fees
Contact us

Resilient Agriculture

One Sample Strategy A Risk Management Program

- Regulatory program to improve analytical capability, increase market uniformity, reduce market uncertainty and improve food safety
- Using one analytical result for multiple purposes

Corn Industry

- Feeding livestock remains the primary use for American corn
- Nationally, livestock and poultry directly consume approximately 40 percent of the country's corn crop - in addition to a significant amount of corn co-products such as distillers grains.

96% of corn produced in Texas is used for livestock feed

2011 Nationa 1%Consumpt	al Corn tion	Year 2012	Texas	
3% 1% 1% 0% 20% 33%	 Feed Export Food seed industry Fuel HFCS 	Harvest (acres)	1.55 million	
26% 13%	StarchSweentenersCereal	Yield (bushels/acre)	130	
National corn association <u>www.texasco</u> www.mafes.n	grower <u>rn.org</u> nsstate.edu	Contribution	\$1.5 billion	

Corn Harvest

In harvest, each truck load of corn will stop at the elevator(grain warehouse) for about half an hour.

Corn Feed Regulation: Aflatoxin 20 ppb

Aflatoxin level table

ppb	Product Description	3000
20	Corn, peanut products, cottonseed meal, and other animal feeds and feed ingredients intended for dairy animals, for animal species or uses not specified above, or when the intended use is not known	
20	Corn, peanut products, and other animal feeds and feed ingredients, but excluding cottonseed meal, intended for immature animals	
100	Corn and peanut products intended for breeding beef cattle, breeding swine, or mature poultry	
200	Corn or peanut products intended for finishing swine of 100 pounds or greater	
300	Corn and peanut products intended for finishing (i.e., feedlot) beef cattle	
One	truck load of the corn can be sampled three or	more times:

- By elevator operators for purchasing decision
- By insurance representatives for value determination
- By regulators for control of sale and distribution

One Sample Program

- The current practice creates market uncertainty and various troubles.
- Use one sample result for multiple purposes:
 - Purchasing
 - Insurance
 - Regulation
- Requirement of measurement:
 - Fast
 - Accurate

Monitoring & Corrective Actions

Approved <u>Eq</u>uipment

Management & Recordkeeping

> Proficiency Verification Process

Training for Individual Employees

Science Driven Approach: Regulators, Stakeholders and Customers

- Evaluation of the current analytical capacity in the field
- Science-based approach

TX Elevator Survey of Testing Kits

- Areas we surveyed:
 - Testing kit model/manufacturer
 - Expiration date of the current testing kit in use
 - Users' experience
 - Sample preparation method/device
 - Up limit of aflatoxin measurement range
 - Samples at three different concentration levels (by 21 independent HPLC measurements)
 - > 52 ppb
 - > 379 ppb
 - > 581 ppb

Survey Results

	Vendor 1	Vendor 2	Vendor 3	Vendor 4
Area	Kit 1	Kit 2	Kit 3	Kit 4 Kit 5
2			1	
3	1	3		
4		1		
7	3	6		
9	3	6	1	3
10				1
12	1		2	2
13	2	2		
14		1		
Total (Texas)	10	19	4	6

Five testing kits from four major kit manufacturers

Returning Results

	HPLC Results (ppb)	STD (ppb)	Elevator results	STD (ppb)
	52	3	(ррБ) 62	50
**	379	18	250	113
	581	34	440	170

- Measurement capacity varies a lot between firms
- Overall performance is terrible

TX Aflatoxin Map

USDA GIPSA Testing Kit Certification Program

Concentration (ppb)	Maximum RSD (%)	Standard Deviation	Range (ppb)
5	25	1.25	2.5-7.5
10	22	2.2	5.6-14.4
20	20	4	12-28
100	16	16	68-132

Study Design to Evaluate Kits

Target		Testing kit		HPLC	
level (ppb)	Analyst 1	Analyst 2	Analyst 3	Analyst 4	
50	7	7	7	21	
300	7	7	7	21	
1000	7	7	7	21	
TEXAS WEATHER TEXAS WEATHER HOTTER THE FOUR SEASONS LANDARY EXAMPLE 2/11 13:00 EXAMPLE SUMMER SEASONS Surface To TO TO TO TO TO TO TO TO TO TO		ail C Pass		ligibility to be u in the managen prog	used risk nent gram

Performance of test kits on samples with different levels of

mycotoxins

OFFICE OF THE TEXAS STATE CHEMIST

Actions and Preparation

- Follow up with the testing kit company for corrective actions
- Guidance with regard to testing kit usage in the "One Sample Strategy" program was developed.
- Training material for the elevator who is participating the program
 - Sampling
 - Grinding
 - Analysis
 - Data report
- Distributes OTSC reference material
- Sample to be retained for six weeks
- Field investigators collect retained sample for HPLC analysis

Reduce Market & Food Safety Risk

Purchasing

Crop Insurance

Regulatory monitoring

APPENDIX C - EXAMPLE OTSC CERTIFICATE OF ANALYSIS

APPENDIX C - EXAMPLE ANALYST ID CARD

epartment of griculture	BULLETIN	NO.: MGR-12-004 APR 5	2012
arm and Foreign gricultural ervices	TO:	All Approved Insurance Providers All Risk Management Agency Field Offices	
isk lanagement		All Other Interested Parties	
gency	FROM:	William J. Murphy Cillian Munphy	
400 idependence		Administrator	
top 0801 /ashington, DC 0250-0801	SUBJECT:	Continuation of One Sample Strategy for Aflatoxin Testing	in Texas
	BACKGRO	UND:	
	The Risk Ma 26, 2011, aut Texas elevato	nagement Agency (RMA) issued Manager's Bulletin MGR-1 thorizing the "One Sample Strategy (OSS)" for aflatoxin testin or facilities for the 2011 crop year. The Bulletin stated RMA	1-011 on July ig in approved would
	annually reau	athorize the program. RMA held discussions with the Office of	of the Texas

State Chemist (OTSC), Regional Offices, and other interested parties, and received written summary results from OTSC to determine whether to continue the program

OFF	OFFICE OF THE TEXAS STATE CHEMIST Agricultural Analytical Services 445 Agronomy - College Station, TX 77843-2114			Mailing Address P.O. Box 3160 College Station, Texas 77841-3160	
	Official Sample Certific	ate of Analysi	Tel (979 845-122) Fax (979) 845-138 S http://otsc.tamu.o	9 du	
	Date		Sampled:	Date	
CERTIFICA	TE #: 2013-facility#	-scale ticket]		
Guarantor:	Your firm's license # Firm Name Address City, State ZIP	Facility:	Your facility's license # Facility Name Sampling Loctaion Address City, State ZIP		
Deaduson	Form #				

Producer's Name

beyond the 2011 crop year.

USDA

Risk Assessment and Management

• Uniformity in the market and improved accuracy

ppb	Product Description
20	Corn, peanut products, cottonseed meal, and other animal feeds and feed ingredients intended for dairy animals, for animal species or uses not specified above, or when the intended use is not known
20	Corn, peanut products, and other animal feeds and feed ingredients, but excluding cottonseed meal, intended for immature animals
100	Corn and peanut products intended for breeding beef cattle, breeding swine, or mature poultry
200	Corn or peanut products intended for finishing swine of 100 pounds or greater
300	Corn and peanut products intended for finishing (i.e., feedlot) beef cattle

Picture of Cargill at the Port

~6 weeks

Year	Samples by testing kits in industry	HPLC verifications by government agency	
2011	720	34	
2012	2115	84	
2013	13,928	588	
2014	14,918	875	

What do we learn from a medical diagnostic test?

Diagnostic tests: Industry measurements(kits)

Gold standard tests: Government agency measurements (HPLC)

Receiver Operating Characteristic Curve (ROC): 2013

Rejection Concentration = 20 ppb by HPLC

Sensitivity: Being able
 to know > 20 ppb

1-Specificity:False
 positive, incorrectly
 tell > 20 ppb

 Area under the curve: Accuracy (0.9-1 suggests excellent)
 0.9013

Industry performance evaluation

Conclusions

- The "OSS" program harmonizes standards and practices between multiple parties within the agricultural community.
- A systems approach requires the coordination and collaboration between multiple parties.
- Harmonization and plasticity are equally important for a resilient resolution.
- A science based approach ultimately benefits the whole agricultural sector and government regulation, and promotes resilience and sustainability.

Outline

- Innovative Technologies to Enable Mechanism Study:
 Systems Biology for Resilience Agriculture
- Characterization and Evaluation Tools: Enable Safety of Agriculture Products in a Changing Climate

Science-Driven Management: A Systematic Approach for Food and Feed Safety toward Resilient Agriculture – "One Sample Strategy"

Perspectives: Regulatory Science to Improve Food and Feed Safety for More Resilience in Production System

A Systems Approach for Resilience

What is Regulatory Science

- Science for regulated products
- Agriculture
- Environment
- Health related products
- You name it.....

Journal of Regulatory Science

http://journalofregulatoryscience.org

2015 • VOL. 3 ISSN: 2377-3537

www.journalofregulatoryscience.org

Volume 3: Issue 1

IE TEXAS STATE CHEMI

Regulatory Science Graduate Curriculum

Advancing the science

of creating tools, standards,

and practices to improve the

protection and compliance

of food systems

<u>regsci.tamu.edu</u>

One of the Key Curriculum OFFICE OF THE TEXAS STATE CHEMIST

SCSC 629/VTMI 629

Laboratory Quality Systems

- Validity & reliability of laboratory data
- Laboratory process control
- Quality assurance procedures, tools and methods
- Laboratory management

AGA NEWS

FAO-TAMU E-learning course strengthens laboratory quality control systems in developing countries

A joint FAO and TAMU E-learning course for Feed Analysts

Analytical results impact every aspect of our daily life. Laboratories test the food and water we consume, the drugs we are prescribed, the air we breathe, and the products we buy. Laboratory quality assurance and quality improvement programmes play a vital role in producing sound and defensible analytical results. The implementation of a laboratory quality system is the key to ensuring compliance with regulatory standards, anining consumer confidence and maintaining

Support for strengthening quality control systems in Animal Feed Analysis Laboratory in developing countries

Office of the Texas State

Related docume

Feedipedia

Chemist

FAO Assistance Towards Feed Analysis. Increasing incomes, improving food safety and safeguarding the environment

The feed analysis laboratory: Establishment and quality control

Quality assurance for microbiology in feed analysis laboratories

Quality assurance for animal feed analysis laboratories Publications on Animal

Publications on Animal Nutrition & Feeding

regsci.tamu.edu

Acknowledgements

